

## Ultra High Resolution Digital Micromirror Spatial Light Modulator OEF500YX

The ultra-high resolution digital micromirror spatial light modulator is designed using the TI low-cost controller DLPC900, which can modulate the amplitude of the input light, thus meeting the application requirements in the fields of computational optics and information optics. Ultra high definition digital micromirror spatial light modulator uses TI advanced light control chips, designed for industrial and scientific research fields, supporting accurate internal and external synchronization signals, and being able to closely cooperate with cameras. This series of products can save image data when powered down, with high cost performance.



## **Product Details**

| Chipset                               | DLPC900 + DLP500YX                        |
|---------------------------------------|-------------------------------------------|
| DMD Type                              | DLP5500                                   |
| DMD Diagonal Size                     | 0.5 inch                                  |
| DMD Physical Resolution               | 2048*1200                                 |
| DMD Micro Mirror Size                 | 5.4um                                     |
| Maximum Frame Rate (Binary)           | 16100Hz                                   |
| Maximum Frame Rate (8-Bit Grayscale)  | 2016Hz                                    |
| Maximum Frame Rate (16-Bit Grayscale) | 1008Hz                                    |
| Memory Module Capacity                | 512Mbit*2                                 |
| Band Range                            | VIS:420nm-700nm                           |
| PC Interface                          | USB 1.1 interface, HDMI, DP interface     |
| Trigger Interface                     | sustain                                   |
| Gray Scale                            | 1-16bit adjustable                        |
| Length Of Flexible Cable              | 31CM                                      |
| Transition Angle                      | ±17.5°                                    |
| DMD Installation Method               | 0°                                        |
| Application Area                      | Optical field modulation, machine vision, |
|                                       | computational imaging, visual guidance,   |
|                                       | super-resolution microscopy, etc          |